999 resultados para Abnormality Detection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which is an important research issue in building a pervasive and smart environment. In dealing with ADL, we argue that it is beneficial to exploit both the inherent hierarchical organization of the activities and their typical duration. To this end, we introduce the Switching Hidden Semi-Markov Model (S-HSMM), a two-layered extension of the hidden semi-Markov model (HSMM) for the modeling task. Activities are modeled in the S-HSMM in two ways: the bottom layer represents atomic activities and their duration using HSMMs; the top layer represents a sequence of high-level activities where each high-level activity is made of a sequence of atomic activities. We consider two methods for modeling duration: the classic explicit duration model using multinomial distribution, and the novel use of the discrete Coxian distribution. In addition, we propose an effective scheme to detect abnormality without the need for training on abnormal data. Experimental results show that the S-HSMM performs better than existing models including the flat HSMM and the hierarchical hidden Markov model in both classification and abnormality detection tasks, alleviating the need for presegmented training data. Furthermore, our discrete Coxian duration model yields better computation time and generalization error than the classic explicit duration model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of explicit duration modelling for classification of sequences of human activity and the reliable and timely detection of duration abnormality was highlighted. The normal classes of behavior were designed to highlight the importance of modelling duration given the limitations of the tracking system. It was found that HMM was the weakest model for classification of the unseen normal sequences with 81% accuracy. Long term abnormality was investigated by artificially varying the duration of primary activity in a randomly selected test sequence. The incorporation of duration in models of human behavior is an important consideration for systems seeking to provide cognitive support and to detect deviation in the behavorial patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines a new problem in large scale stream data: abnormality detection which is localized to a data segmentation process. Unlike traditional abnormality detection methods which typically build one unified model across data stream, we propose that building multiple detection models focused on different coherent sections of the video stream would result in better detection performance. One key challenge is to segment the data into coherent sections as the number of segments is not known in advance and can vary greatly across cameras; and a principled way approach is required. To this end, we first employ the recently proposed infinite HMM and collapsed Gibbs inference to automatically infer data segmentation followed by constructing abnormality detection models which are localized to each segmentation. We demonstrate the superior performance of the proposed framework in a real-world surveillance camera data over 14 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In data science, anomaly detection is the process of identifying the items, events or observations which do not conform to expected patterns in a dataset. As widely acknowledged in the computer vision community and security management, discovering suspicious events is the key issue for abnormal detection in video surveil-lance. The important steps in identifying such events include stream data segmentation and hidden patterns discovery. However, the crucial challenge in stream data segmenta-tion and hidden patterns discovery are the number of coherent segments in surveillance stream and the number of traffic patterns are unknown and hard to specify. Therefore, in this paper we revisit the abnormality detection problem through the lens of Bayesian nonparametric (BNP) and develop a novel usage of BNP methods for this problem. In particular, we employ the Infinite Hidden Markov Model and Bayesian Nonparamet-ric Factor Analysis for stream data segmentation and pattern discovery. In addition, we introduce an interactive system allowing users to inspect and browse suspicious events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detecting abnormalities from multiple correlated time series is valuable to those applications where a credible realtime event prediction system will minimize economic losses (e.g. stock market crash) and save lives (e.g. medical surveillance in the operating theatre). For example, in an intensive care scenario, anesthetists perform a vital role in monitoring the patient and adjusting the flow and type of anesthetics to the patient during an operation. An early awareness of possible complications is vital for an anesthetist to correctly react to a given situation. In this demonstration, we provide a comprehensive medical surveillance system to effectively detect abnormalities from multiple physiological data streams for assisting online intensive care management. Particularly, a novel online support vector regression (OSVR) algorithm is developed to approach the problem of discovering the abnormalities from multiple correlated time series for accuracy and real-time efficiency. We also utilize historical data streams to optimize the precision of the OSVR algorithm. Moreover, this system comprises a friendly user interface by integrating multiple physiological data streams and visualizing alarms of abnormalities. © 2013 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Automated visual surveillance of crowds is a rapidly growing area of research. In this paper we focus on motion representation for the purpose of abnormality detection in crowded scenes. We propose a novel visual representation called textures of optical flow. The proposed representation measures the uniformity of a flow field in order to detect anomalous objects such as bicycles, vehicles and skateboarders; and can be combined with spatial information to detect other forms of abnormality. We demonstrate that the proposed approach outperforms state-of-the-art anomaly detection algorithms on a large, publicly-available dataset.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Radiographer abnormality detection systems that highlight abnormalities on trauma radiographs (‘red dot’ system) have been operating for more than 30 years. Recently, a number of pitfalls have been identified. These limitations initiated the evolution of a radiographer commenting system, whereby a radiographer provides a brief description of abnormalities identified in emergency healthcare settings. This study investigated radiographers' participation in abnormality detection systems, their perceptions of benefits, barriers and enablers to radiographer commenting, and perceptions of potential radiographer image interpretation services for emergency settings. Methods A cross-sectional survey was implemented. Participants included radiographers from four metropolitan hospitals in Queensland, Australia. Conventional descriptive statistics, histograms and thematic analysis were undertaken. Results Seventy-three surveys were completed and included in the analysis (68% response rate); 30 (41%) of respondents reported participating in abnormality detection in 20% or less of examinations, and 26(36%) reported participating in 80% or more of examinations. Five overarching perceived benefits of radiographer commenting were identified: assisting multidisciplinary teams, patient care, radiographer ability, professional benefits and quality of imaging. Frequently reported perceived barriers included ‘difficulty accessing image interpretation education’, ‘lack of time’ and ‘low confidence in interpreting radiographs’. Perceived enablers included ‘access to image interpretation education’ and ‘support from radiologist colleagues’. Conclusions A range of factors are likely to contribute to the successful implementation of radiographer commenting in addition to abnormality detection in emergency settings. Effective image interpretation education amenable to completion by radiographers would likely prove valuable in preparing radiographers for participation in abnormality detection and commenting systems in emergency settings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E. R. E., Zwiggelaar, R. (2008). A novel breast tissue density classification framework. IEEE Transactions on Information Technology in BioMedicine, 12 (1), 55-65

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multispectral analysis is a promising approach in tissue classification and abnormality detection from Magnetic Resonance (MR) images. But instability in accuracy and reproducibility of the classification results from conventional techniques keeps it far from clinical applications. Recent studies proposed Independent Component Analysis (ICA) as an effective method for source signals separation from multispectral MR data. However, it often fails to extract the local features like small abnormalities, especially from dependent real data. A multisignal wavelet analysis prior to ICA is proposed in this work to resolve these issues. Best de-correlated detail coefficients are combined with input images to give better classification results. Performance improvement of the proposed method over conventional ICA is effectively demonstrated by segmentation and classification using k-means clustering. Experimental results from synthetic and real data strongly confirm the positive effect of the new method with an improved Tanimoto index/Sensitivity values, 0.884/93.605, for reproduced small white matter lesions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This papers examines the use of trajectory distance measures and clustering techniques to define normal
and abnormal trajectories in the context of pedestrian tracking in public spaces. In order to detect abnormal
trajectories, what is meant by a normal trajectory in a given scene is firstly defined. Then every trajectory
that deviates from this normality is classified as abnormal. By combining Dynamic Time Warping and a
modified K-Means algorithms for arbitrary-length data series, we have developed an algorithm for trajectory
clustering and abnormality detection. The final system performs with an overall accuracy of 83% and 75%
when tested in two different standard datasets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our aim is to estimate the perspective-effected geometric distortion of a scene from a video feed. In contrast to most related previous work, in this task we are constrained to use low-level spatiotemporally local motion features only. This particular challenge arises in many semiautomatic surveillance systems that alert a human operator to potential abnormalities in the scene. Low-level spatiotemporally local motion features are sparse (and thus require comparatively little storage space) and sufficiently powerful in the context of video abnormality detection to reduce the need for human intervention by more than 100-fold. This paper introduces three significant contributions. First, we describe a dense algorithm for perspective estimation, which uses motion features to estimate the perspective distortion at each image locus and then polls all such local estimates to arrive at the globally best estimate. Second, we also present an alternative coarse algorithm that subdivides the image frame into blocks and uses motion features to derive block-specific motion characteristics and constrain the relationships between these characteristics, with the perspective estimate emerging as a result of a global optimization scheme. Third, we report the results of an evaluation using nine large sets acquired using existing closed-circuit television cameras, not installed specifically for the purposes of this paper. Our findings demonstrate that both proposed methods are successful, their accuracy matching that of human labeling using complete visual data (by the constraints of the setup unavailable to our algorithms).